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F r o m  a number of qualitative conjectures, the constants me, c, h, a n d  a sp in (8 )  
gauge field theory, I derive the following particle masses  ( q u a r k  masse s  are 
constituent masses) and force constants: up quark mass  = 312.7542 MeV;  down 
quark mass  = 312.7542 MeV;  p r o t o n  m a s s  = 938.2626 MeV;  n e u t r i n o  m a s s e s  (all 
types) = 0; m u o n  mass  = 104.76 MeV;  strange quark mass  = 523 MeV;  charmed 
quark mass=1989 MeV; tauon mass=1877 MeV; bottom quark m a s s =  
5631 MeV;  top quark m a s s =  129.5 G e V ;  W + m a s s = 8 0 . 8 7  GeV;  W -  m a s s =  
80.87 G e V ;  W o m a s s  = 99.04 GeV;  fine structure constant a = 1 /137 .036082 ;  weak 
constant times the proton mass squared f M ~ = 0 . 9 7 •  10-5;  color constant= 
0.6286.  F r o m  the pion mass in addition, I derive the P l a n c k  m a s s ~  
(1 -1 .6 )  •  so that the gravitational constant times the proton mass  
squared GMZp ~ (3 .6-8 .8)  • 10 -39. 

With certain qualitative conjectures, spin(8) gauge field theory can be 
made to give values for particle masses and force constants that are close 
to currently accepted experimental values. I do not know how to prove the 
conjectures. If they can be shown to be true, then spin(8) gauge field theory 
should be a good candidate for a unified theory of electromagnetism, the 
weak force, the color force, and gravitation. If they cannot be shown to be 
true, then the values calculated herein should be considered to be nothing 
more than interesting numerology. 

As is discussed in Appendix A, spin(8) gauge field theory has a natural 
lattice gauge theory structure. It is assumed that the gauge bosons of the 
four forces are carried by the links of the space-time lattice and that the 
fermion matter particles and antiparticles are at the vertices of the lattice. 

Spin(8) has a 28-dimensional Lie algebra and has a Weyl group with 
192 elements. 

The Weyl group of spin(8) (192 elements) can be decomposed as the 
semidirect product of the Weyl groups of sp(2) (eight elements), SU(3)  

1P.O. Box 1032, Cartersville, Georgia 30120.  
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(six elements), spin(4) (four elements), and the maximal torus U(1) 4 
(identity). 

Sp(2) is isomorphic to spin(5) and acts naturally on S 4. Its Lie algebra 
is isomorphic to that of the de Sitter group and has ten infinitesimal 
generators. Those ten infinitesimal generators are here identified as 
gravitons, the carriers of the gravitational force. 

SU(3) acts naturally o n  C P  2. Its Lie algebra has eight infintesimal 
generators, which are here identified as gluons, the carriers of the color force. 

Spin(4) is isomorphic to the direct product SU(2 ) •  SU(2) and acts 
naturally on $2• S 2. Its Lie algebra has six infinitesimal generators. 

Conjecture 1. By spontaneous symmetry breaking, the six infinitesimal 
generators of spin(4) act like the three infinitesimal generators of SU(2), 
but acquire mass related to the masses of the first-generation fermions. 

Comment. Consider two links of the space-time lattice connected by 
a common vertex. Consider the first link as carrying a massless gauge boson 
corresponding to any of the six infinitesimal generators of spin(4). Then 
spontaneous symmetry breaking should require that the gauge boson carried 
by the second link be such that the net result of the two links taken together 
should be one of the three infinitesimal generators of SU(2). The three 
generators of SU(2) should then correspond to the W +, W-, and W ~ weak 
bosons. Their masses should come from the fermion particles and anti- 
particles associated with the vertex joining the two links. Such a mechanism 
for spontaneous symmetry breaking would have no leftover Higgs scalar 
particles, and is therefore distinguishable from the standard Weinberg- 
Salam theory. It is more closely related to purely geometric theories (Finkel- 
stein et al., 1963). 

Pursuant to Conjecture 1, the six infinitesimal generators of spin(4) 
are here identified with the weak bosons W +, W-,  and W ~ 

The maximal t o r u s  U(1) 4 acts naturally o n  T 4 = ( S l )  4. Its four 
infinitesimal generators are here identified with the four components (one 
time and three space) of the photon, the carrier of the electromagnetic force. 2 

2"We have so far used the term "photon"  rather loosely; actually there are four different kinds 
of  photons that can be exchanged between the electrons, which correspond to the four possible 
directions of polarization x, y, z, and t. By a suitable transformation of the representation, 
these can be replaced by an instantaneously acting Coulomb interaction and two kinds of 
photons which are of  the familiar kind, polarized transverse to the direction of motion and 
propagated at the speed of light. It is thus found that the inverse-square law of static interaction 
and the delayed dynamical action between charges are both accounted for by the single process 
of  the transmission of four-component "photons" between the charges" (Leighton, 1959). 
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Now consider the elementary spinor irreducible representations of 
spin(8), and denote them by s+ and s_. As s+ and s_ are mirror images of 
each other, s+ can be taken to the left handed and s_ to be right handed. 

The Lie algebra of spin(8) can be written in terms of triples of Pauli 
matrices as follows (Gunaydin et al., 1973; Georgi, 1982): Let 

0), and/=(; 01). s ( $2 (0i-0)' s3--(10-1 
Let @ denote the direct product. Then define o~, . . . ,  07 by 

iOI=--SI@SI@S2, i04=$2@$2@S I 

i02=-sl@s2@I, i05=-$2@$2@S 3 

i03=S1@$3@$2, i06=$2@I@s 2 

i07=--S3@I • I 

Form the Lie algebra of spin(8) by defining OAB=(--I/2i)[OA, OB] , and 
noticing that the 21 ~ndependent matrices of the OAB form the Lie algebra 
of spin(7). The 28-element Lie algebra of spin(8) is given by OAB(~iOA, 
where A, B run from 1 to 7. 

Therefore the gauge bosons corresponding to the Lie algebra 
infinitesimal generators can be seen as acting on spinor particles represented 
by triples of spinors, and an octet basis for the fermion particles upon which 
the left-handed representation s+ acts can be taken to be 

(~)  @ ( ~ ) @ ( ~ )  �9 �9 �9 electron 

( ~ ) @ ( ~ ) @ ( : ) '  ( : ) @ ( 7 ) @ ( : )  ' ( 7 ) @ ( : ) @ ( : )  " ' ' u p q u a r k s  

( : )  @(~)  @(X)'  ( ~ ) @ ( : ) @ ( ~ ) '  ( ~ ) @ ( : ) @ ( 7 )  " ' ' dOwnquarks  

(~)  @ ( ~ ) @ ( : ) . . . n e u t r i n o  

This is a modification of the Harari-Shupe classification (Harari, 1979; 
Shuper, 1979; Adler, 1980) with the convention that the electric charge of 
a triple containing N of the (1) spinors is ( -1)U(N/3) ;  that the (o) spinor 
carries no electric charge; and that color charges are assigned as red if the 
third spinor is unlike the other two, blue if the second spinor is unlike the 
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other two, green if the first spinor is unlike the other two, and colorless if 
all three spinors are alike. 

Therefore the left-handed s+ representation of spin(8) gives the leptons 
and quarks needed to build the first-generation particles of physics. Massless 
neutrinos must travel at the speed of light and cannot change their helicity, 
but massive quarks and electrons will move more slowly and can appear 
to have either helicity. 

The same reasoning applied to the s_ representation gives the antilep- 
tons and antiquarks needed to build the first-generation antiparticles of 
physics. 

Higher generations, as the muon second generation and the tauon third 
k + generation, should come from representations of the form s+ or s~-, where 

k § and k-  are integers greater than 1. 
In the lattice picture, the links carry gauge bosons and each vertex can 

have particles or antiparticles, either of the stable first-generation due to 
the elementary spinor irreducible representations s+ and s_, or of the 
unstable higher generations due to the higher-order representations. 

Now consider the interactions between the gauge bosons and the 
particles and antiparticles. Let A |  B |  C denote the particle or antiparticle. 
Let ' denote the map taking (~) into (o) and (o) into (10), 

The U(1) photon of electromagnetism does not carry either electric 
charge or color charge, and cannot change the nature of any leptons or 
quarks: 

photon: A | 1 7 4 1 7 4 1 7 4  

The SU(2) weak bosons are normally ddnoted by W +, W-, and W ~ 
However, here it is more convenient to use the convention that W' is W § 
or W- (whichever does not change the fermion A | 1 7 4  C) and W" is W- 
or W § (whichever does change the fermion A | B | C). The unconventional 
notation shows more clearly that W' and W" correspond to Lie algebra 
elements of SU(2) in the Weyl root space and that W ~ corresponds to the 
element of the Cartan subalgebra of SU(2). Weak bosons can carry electric 
charge but not color charge. Weak bosons can change electrons into 
neutrinos and vice versa, and can change up quarks into down quarks and 
vice versa, but they cannot change leptons into quarks or quarks into leptons: 

W': A | 1 7 4 1 7 4 1 7 4  

W": A | 1 7 4  o A ' | 1 7 4  

W~ A | 1 7 4 1 7 4 1 7 4  

W' and W" are the elements of the Weyl group $2 of SU(2). 
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The S U ( 3 )  g luons  can carry  color  charge  bu t  not  e lectr ic  charge.  G luons  
can change  the color  charge  o f  a quark,  bu t  they canno t  change  the na ture  
o f  a l ep ton  or  quark:  

g luon l :  

gluon2: 

gluon3: 

gluon4: 

gluonS: 

gluon6: 

gluonT: 

gluon8: 

A | 1 7 4 1 7 4 1 7 4  

A|174  A | 1 7 4  

A Q B | 1 7 4  

A | 1 7 4 1 7 4 1 7 4  

A |174174174  

A | 1 7 4  ~ C | 1 7 4  

A|174 A | 1 7 4  

A | 1 7 4 1 7 4 1 7 4  

G l u o n  I t h rough  g luon 6 are the e lements  o f  the  Weyl  g roup  $3 of  SU(3) .  3 
G l u o n  7 and  g l u o n  s are e lements  o f  the Car t an  suba lgebra  o f  SU(3) .  

The sp(2)  gravi tons  can carry  co lor  charge ,  e lectr ic  charge,  or  both .  
Only  gravi tons  can change  lep tons  into quarks  or  quarks  into leptons:  

g rav i ton l :  

gravitone:  

g rav i ton  3: 

graviton4: 

gravitonS: 

graviton6: 

gravitonT: 

gravitonS: 

gravitong: 

gravi tonl~ 

A | 1 7 4 1 7 4 1 7 4  

A|174 A ' | 1 7 4  

AQBQC--> A | 1 7 4  

A|174174174 

A | 1 7 4 1 7 4 1 7 4  

A|174 A ' | 174  

A | 1 7 4 1 7 4  

A | 1 7 4  ~ A ' |174 

A | 1 7 4 1 7 4 1 7 4  

A|174 A | 1 7 4  

3Note that, as SU(3) and sp(2) are rank-2 Lie groups, the root spaces of their Lie algebras are 
two-dimensional and there exists a 1 : 1 correspondence between the root vectors and the 
Weyl group elements that correspond to reflections in hyperplanes perpendicular to the root 
vectors. This useful correspondence does not exist for higher-rank Lie groups in general, and 
particularly does not exist for spin(8), which has rank 4 and a four-dimensional root space, 
and has 24 root vectors (arranged as the vertices of a 24-ce11) but a Weyl group with 192 
elements. Therefore it is much easier to carry out part of the analysis of this paper after 
decomposing spin(8) into sp(2), SU(3), spin(4), and U(1)  4 rather than working directly with 
Spin(8) all the time. 
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Graviton I through graviton 8 are the elements of the Weyl group S2xZ~ 
of sp(2). Graviton 9 and graviton 1~ are elements of the Cartan subalgebra of 
sp(2). 

Conjecture 2. The same type mechanism that confines the gluons 
that carry color charge also confines the gravitons that carry electric charge 
or color charge. 

Comment. The colorless gluon 7 and gluon 8 of the Cartan subalgebra 
of SU(3) may be unconfined but unobservable of everything is exactly 
colorless at scales that are experimentally observable. Similarly, only 
graviton I through graviton 8 need be confined as only they can carry electric 
charge or color charge. The neutral graviton 9 and graviton t~ may be uncon- 
firmed, and their interaction with mass should then give the observed 
long-range gravitational force. 

The conjectured region of confinement of charged gravitons may be 
as small as the Planck length. 

Partial Summary 

In this paper thus far, subject to Conjecture 1 and Conjecture 2, spin(8) 
gauge field theory has been shown to classify the forces of  electromagnetism, 
the weak force, the color force, and gravitation; to account for the qualitative 
properties of the gauge bosons; to classify the elementary fermion lepton 
and quark particles and antiparticles, including higher generations; to 
account for the qualitative pattern of electric and color charges of the 
fermion particles and antiparticles; and to have a natural lattice gauge 
theory structure. From more or less standard techniques of lattice gauge 
theory (Creutz, 1980), it should be possible to arrive at a general form for 
a Lagrangian for the theory. 

Now we must calculate the particle masses and force constants that 
go into the Lagrangian to get specific predictions about experimental results. 

Consider the space of triples of spinors that corresponds to the rep- 
resentation s+, that is, the first generation particles. (A similar line of 
reasoning should apply to the s_ antiparticles.) Assume that the (o) spinor 
has no mass. Then the neutrino, being (o) | (o) | (o), is massless. What about 
the electron and the quarks? 

The space of triples of spinors is an eight-dimensional complex space 
with infinite volume. If the mass of a particle is to be related to its "volume" 
in the space of triples of spinors, then calculation of ratios of particle masses 
requires the mapping of  that space into a bounded domain. Such a bounded 
domain must also be an eight-dimensional complex space. Consider the 
irreducible symmetric bounded domain of type IVs, denoted by D 8. It is 
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isomorphic to S0(10)/S0(8)• S O ( 2 ) .  4 Denote the Silov boundary of D 8 
by Q8. Q8 is an eight-dimensional real space (Hua,  1963). 

Conjecture 3. The mass of  a first-generation electron or quark is propor- 
tional to two factors: the number  of gravitons that are related to it and the 
volume of the part  of  Q8 that is related to it. 

Comment. The meaning of "related" is made clear in the analysis that 
follows. I do not know why Q8 works, but it has the right dimension and 
gives results that are pretty well in accord with experiment. 

Of the ten gravitons, graviton ~ and graviton m are in the Cartan sub- 
algebra for sp(2) and do not carry any color or electric charge. They are 
not considered to be related to either the electron or the quarks. 

Graviton 2 through graviton 7 carry color charge. The six of  them are 
therefore considered to be related to the quarks. 

Graviton ~ and graviton 8 carry no color charge, but may carry electric 
charge. The two of them are therefore considered to be related to the 
electron. However, by interaction with the first-generation electron, only 
one of the two can produce a massive particle (the electron), while the 
other will produce a massless neutrino. Therefore only one graviton is 
related in a mass-producing way to the first-generation electron. (Note that 
this line of  reasoning does not apply to higher-generation massive leptons, 
where both of the gravitons are related to the massive lepton in a mass- 
producing way.) 

Therefore the graviton number  factor ratio of  a first-generation quark 
to the first-generation electron is 6: 1. 

What about the Q8 volume factor? Consider the red down quark. The 
same analysis woutd apply to any of the first-generation quarks. By the 
color force, the red down quark can be taken into a blue down quark or a 
green down quark. By the weak force, the red down quark can be taken 
into the red up quark. By both the color and weak forces, the red down 
quark can be taken into a blue up quark or a green up quark. Although the 
weak and color forces cannot take a quark into an electron or neutrino, the 
quarks can combine to form a proton (two ups and a down) or a neutron 
(two downs and an up). The proton and neutron are similar to the electron 
and neutrino in that they are colorless sp in - l /2  particles with unit electric 
charge or no electric charge. Therefore the red down quark (or any other 
first-generation quark) is taken to be related to all of  Q8, with volume V(Q8). 

The electron cannot be taken into any other particle except a neutrino 
by the electromagnetic, weak, or color forces. As the neutrino is massless, 

4Article 401, Symmetic Riemannian spaces, in the Encyclopedic Dictionary of Mathematics 
(MIT Press, Cambridge, Massachusetts, 1977). 



162 Smith 

the electron mass is taken to be related only to its own one-dimensional 
subspace of Qs, the volume of which subspace is taken to be 1. 

Therefore, if Me = electron mass, Mu = up quark mass, and Me = down 
quark mass (Hua, 1963): 

Mu Md 6 V(Q 8) 
. . . . .  6 V(QS) = 27r 5 

Me Me l 1 

If Me i s  taken to be 0.5110034MeV (Lee, 1981), then Mu=Md = 
312.75420 MeV. Throughout this paper the quark masses given are the 
constituent masses, so the proton mass Mp = 2 M u + M d  =938.2626 MeV. 
Experimentally, Mp = 938.2796(27) MeV (Lee, 1981). 

Second and higher generation fermion particles and antiparticles corre- 
k s k - spond to s+ and irreducible representations of spin(8), where k is 2 or 

greater. Where the first generation is formed by triples of spinors, the kth 
generation is formed by triples of k-tuples of spinors, of which there are 
(2k) 3= 2 3k = 8 k. They combine to form the eight particles of the kth gener- 

k ation due to s§ according to the following rules: 

The triple of k-tuples containing only (o) spinors corresponds to the 
neutrino ; 

The other 2 k - 1 colorless triples of k-tuples correspond to the heavy 
lepton; 

The 3(2 k -  1) triples of k-tuples containing exactly two k-tuples with 
only (o) spinors correspond to the down-type quarks, such as the 
strange or bottom quarks; 

The remaining 2 3k - - 2 k + 2 q  - 3 triples of k-tuples correspond to the up- 
type quarks, such as the charmed or top quarks. 

The kth generation antiparticles due to s k _ are formed similarly. 
To calculate the second generation fermion masses, consider the left- 

handed s2+ particles corresponding to triples of pairs of spinors. 
The massless muon neutrino corresponds to (o0)| (oo)| (0o). 

Conjecture 4. The masses of second-generation and higher-generation 
heavy leptons are given by comparing the symmetry groups of the elements 
of the triple of the heavy lepton with the symmetry groups of the fermions 
of lower generations, the mass ratio being the ratio of the sizes of the 
symmetry groups; the masses of the down-type quarks are given by multiply- 
ing the heavy lepton mass by the high-generation graviton number factor 
of 3 = 6/2, plus any mass of the down-type quark of the next lower generation 
that does not contribute to the heavy lepton mass. 

The masses of the up-type quarks are given by multiplying the mass 
of the down-type quark by the ratio of the number of triples of k-tuples 
for up-type quarks to the number of triples of k-tuples for down-type 
quarks, (23k - 2 k+2 + 3)/[3 (2 k - 1)], for kth generation quarks ; and the neu- 
trino, containing only spinors of the type (o), is massless. 
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Comment. The high (at least second) genera t ion  gravi ton n u m b e r  factor  
is 3 because,  unlike the first generat ion in which gravitong: A |  B |  C -~ A ' |  
B ' |  C '  must  take the electron (~) | (Io) | (1) into the neutr ino (~ | (~ | (0), 
gravi ton 8 can take a m u o n  (heavy lepton) lO io lo (ol) | (ol) | (ol) into ano ther  m u o n  

01 01 01 (lO)|174 Therefore  both  gravi ton I and  gravi ton 8 are related in a 
mass -p roduc ing  way to the high-generat ion heavy lepton,  and the gravi ton 
n u m b e r  factor  ratio of  a k-genera t ion  quark  to a k-genera t ion  heavy  lepton 
(k at least 2) is 6:2.  

N o w  the calculat ions for h igh-generat ion heavy lepton and quark  
masses  can be done.  

The 2 2 -  1 = 3  triples cor responding  to the m u o n  are ( ~ ) | 1 7 4  
10 10 01 01 01 (o l ) |174176 and (~o)|174 The first, m a d e  up of  spinors all of  

the type (~), cor responds  to the electron. The  other  two cor respond  to the 
pe rmuta t ion  g roup  on two elements,  $2. $2 has order  2, and is 1/3 the size 
of  the color  pe rmuta t ion  group  on three elements ,  $3, that  gives the up and 
down quarks  their  mass  of  312.7542 MeV. Therefore  the muon  mass  should 
be the sum of  the electron mass and 1/3 of  up  or down quark  mass,  or 
104.7642 MeV. The exper imenta l  value is 105.65946(24) MeV (Lee, 1981). 

The strange quark  mass  should come f rom two sources. First, it should 
have the o ther  2/3  of  the down quark  mass  that  is not  associa ted with the 
m u o n  mass,  or 208.5028 MeV. Second, it should have the m u o n  mass  t imes 
the h igh-genera t ion  gravi ton factor  6 / 2 = 3 ,  for  314.2872 MeV. The total  
s trange quark  mass  should be 522.7900 MeV. The currently accepted  esti- 
ma ted  value is about  550 MeV (Isgur  and Karl ,  1983). 

The cha rmed  quark  mass  should also come f rom two sources. First, it 
should have the other  2/3  of  the up quark  mass  that  is not associated with 
the m u o n  mass,  or 208.5028 MeV. Second, as it cor responds  to 26 -- 2 4 +  3 = 51 
triples, it should have 51/9 t imes the m u o n  par t  o f  the s trange quark  mass,  
or 1780.9608 MeV. The total  charmed  quark  mass  should be 1989.4636 MeV. 
The current  est imate is abou t  1700 MeV (Isgur  and Karl ,  1983). 

The r ight -handed s 2 antipart icle fe rmion masses  are calculated in the 
same way. 

To calculate the third generat ion fe rmion  masses,  consider  the left- 
handed  s3+ part icles cor responding  to triples of  triples of  spinors.  

[ooo~ ~ {oo% c~ [oo0~ The massless  tauon  neutr ino cor responds  to t 1 t i J,~ ~ t ~ ~ J ~ ~ ~ ~J. 
The 2 3 -  1 = 7 triples cor responding  to the tauon  are colorless,  so each 

/ i11~ (110~ /I01~ t'011 ~ /001~ (010] ( 100"~ respectively.  is made  up of  ~oooJ, tool J, ~olol, tlooJ, ~loJ, t~ol~, or toll J, 
Therefore ,  the seven triples cor responding  to the t auon  also cor respond  
to the electron,  the red, blue,  and green up quarks,  and the red, blue,  and 
green down quarks,  and  the mass of  the t auon  should be the same as the 
sum of  the masses  of  the first generat ion massive fe rmion particles:  
1877.036 MeV. The exOerimental  value is 1784(4) MeV (Lee, 1981). 
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The bottom quark should have the tauon mass times the high generation 
graviton factor of 3, for 5631.108 MeV. The currently accepted estimated 
value is about 5200 MeV (Isgur and Karl, 1983). 

The top quark corresponds to 29 -- 25 + 3 = 483 triples, so it should have 
483/21 times the bottom quark mass, for 129 515.48 MeV. The current lower 
bound is 17 900 MeV (Lee, 1981). 

The right-handed s 3_ antiparticle fermion masses are calculated in the 
same way. 

Similar calculations could be made for higher generations than the 
third. It should be noted that some down-type quarks of higher generations 
may have masses less than the top quark mass, and that the heavy leptons 
of generation 3k should have mass equal to the sum of the masses of the 
heavy lepton and quarks of the k-generation. As an easy example, calculate 
the masses of the 6-generation: 

Heavy lepton mass = muon mass + 3 (charmed quark mass) 

+ 3 (strange quark mass) = 7640 MeV; 

Down-type quark mass = 3(heavy lepton mass) = 22 920 MeV; 

Up-type quark mass = (down-type quark mass) (218 -- 28 + 3)/(3(26 - 1)) 

=31 765 811 MeV; 

Neutrino mass = 0. 

Although the 6-generation up-type quark, at 32 TeV, may not be observed 
soon, it is worth noting that the 23 GeV down-type quark of 6-generation 
should be observed if generations higher than the third exist. 

Calculation of force constants and weak boson masses requires a 
measure of  the relative strengths of  the four forces. 

Conjecture 5. The relative strengths of the four forces are given by the 
ratios of  the following volumes (Hua 1963), as well as some particle mass 
ratios: 

Electromagnetism: VE = V(S 1) = 2~" (one VE for each 
of the four photon polarizations) ; 

Weak force: VW = V(S 2) V( Q 3 ) / [  V ( D  3) 1/2]  = 257r2(6 / ~r)1/2 

[one VW for each of the two SU(2)s in spin(4)]; 

Color force: VC = V( CP 2) V ( Q I ' 3 ) / [  V( DI'3) 1/4] = 327r4(67r)1/4/3  ; 

Gravitational force: VG= V(S4) V(QS)/[V(DS)1/4]=287r4(15/27r)~/4/9 

Comment. As S 1 corresponds to U(1), the formula for VE is natural. 
The factor V(S 2) is natural for VW, and the factor V(CP 2) is natural 
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for VC. However,  I do not know why the factors V(Q 3) and [V(D3) 1/2] 
work for VW. Neither do I know why the factors V(Q ~'3) and [V(D~'3)~/4], 
which are the volume of the Silov boundary of a domain of type 15.3 and 
the fourth root of  the volume of the domain of type 11,3, are needed to 
calculate VC. I chose the factors because a similar choice seemed to work 
for VG. V(S 4) is a natural factor for VG, but the ratio V(QS)/[V(DS) 1/4] 
is something that I do not fully understand. I do not know why the ratio 
works, but it gives answers that are close to experimental values. I would 
not have thought of  using such a ratio, but it had been used earlier by Wyler 
(1971), who, as far as I know, did not know where the ratio came from 
either (Gilmore, 1972). Particle mass ratios will only come into play when 
dealing with the massive weak bosons or with the Planck mass of gravitation. 

Now the rest of  the calculations can be done. 
As in the comment  to Conjecture 1, consider the weak boson masses 

to come from a spontaneous symmetry breaking mechanism that uses two 
links connected by a vertex, with the masses of  the weak bosons coming 
from the masses of  the fermion particles and antiparticles at the vertex. 
Only stable first-generation fermions should be considered. The sum of the 
masses of  the first-generation particles and antiparticles M ~  has been 
calculated to be 3.754 GeV. The sum of the masses of  the weak bosons W +, 
W-,  and W ~ denoted by Mw, should be MF~ times a ratio of  the weak 
force strength to the electromagnetic force strength: 

Mw VW 
= 2  = 16(67r) 1/2, 

MF1 2 VE so that Mw = 260.774 GeV 

VE is multiplied by 2 because there are two U(1)s for each SU(2). The 
whole ratio is multiplied by 2 because there are two SU(2)s in spin(4). 

To determine the masses of  W +, W-,  and Wo individually, consider 
that SU(2) is like S 3; S 3 has the Hopf  fibration S 1 ~ S 3 ~ S 2; and S 2 should 
correspond to W + and W-,  while S ~ should correspond to Wo. 

The unit sphere S 3 in R 4 contains the point (1/2, (1/2, 1/2, 1/2); the 
corresponding point in S 2 is (1/,/3, 1/~/3, 1/,/5); and the corresponding 
point in S '  is (l/x/2, l/x/2). 

Let Mw~ be the sum of the masses of  W + and W-,  which masses 
should be equal: Mw+= Mw. 

Let Mwo be the mass of  the Wo. 

Mw~ V(S2)(2/.,/3) 4~/2 
m 

Mwo V($1)(2/~/-2) 2~rx/3 
1.632993 
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As 

Mw = 260.774 GeV: Mw• = 161.73 GeV, Mw+ = Mw_ = 80.87 GeV, 

Mwo = 99.04 GeV 

Experimentally, Mw+ = Mw_ = 81(5) GeV (Lubkin, 1983), and Mwo = 
93(4) GeV. 5 

The fine structure constant a can be defined by separating two electrons 
by their Compton wavelength, measuring their electrostatic energy of repul- 
sion, and dividing that by the rest mass energy of an electron. 6 I calculate 

a bY 
4 VE 

a = = 1/137.036082 
VG 

VE is multiplied by 4 because there are four polarizations of the photon. 
Experimentally, a = 1 / 137.03604(11).7 

The weak force constant Gw is given by 

2vw M~ 
Gw - = 2.886 x 10 -12 

VG (M2w§ 2 2 Mw_+ Mwo) 

VW corresponds to the weak force that acts on S 2, and it is multiplied by 
2 because there are two SU(2)s in spin(4). The VG corresponds to the 
sp(2) de Sitter gravitational force that acts on S 4. The ratio of squares of 
masses reflects the fact that the weak force is carried by the massive weak 
bosons. GwM~ = 0.97 x 10 -5, where Mp is the proton mass (Rosenfeld and 
Wightman, 1974). Experimentally, 2 GwMp = 1.02 x 10 -5. Note that Gw is 
related to the Fermi constant GF by Gw = GF(M2ec/h3). 

The color force constant Gc is given by 

Gc = VC=3_(aI"T2  1/4 
VG 8 \  5 ] =0.6286 

The value is of the order of unity, and is in the range that is currently 
accepted in quantum chromodynamics (Lee, 1981). 

The constant Gc for gravitation is given by 

VG M~ M~ 
G G - - - - - -  VG M2eL M~L 

SRough average of values in G. Lubkin, Physics Today (November 1983), p. 17. 
6See Manin (1981), p. 48. 
7Handbook of Chemistry and Physics, 59th edition CRC Press, (1978-1979), pp. F-250, F-252. 
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Here, Go is related to the Newton constant GN by Go = GN(M~/hc), and 
Mpj denotes the Planck mass.  Mpl must be estimated in order to calculate 
Go. To get a rough estimate, note that spin(8) gauge field theory has a 
natural lattice gauge theory structure, and estimate the mass of a one-vertex 
universe in spin(8) gauge field theory. 

Consider a sum over all possible combinations of  particle-antiparticle 
pairs of  the first generation fermions at the one vertex. As a one-vertex 
lattice has no links, there are no gauge 'bosons  to carry away any of  the 
pairs. There are eight fermion particles and eight fermion antiparticles, for 
a total of 64 particle-antiparticle pairs. There are then 264 combinations of  
particle-antiparticle pairs. A typical combination should have several 
quarks, several antiquarks, a few colorless quark-ant iquark pairs that would 
be equivalent to pions, and some leptons and antileptons. 

As the masses of  leptons are small, ignore their contribution to the sum. 

As the independent quarks and antiquarks are fermions, each could 
be present on the vertex only twice owing to the Pauli exclusion principle, 
so the total contribution to the mass of independent quarks and antiquarks 
(of which there are 12, each having mass of  about 0.3 GeV) is only about 
7.2 GeV. 

Pions, colorless quark-ant iquark pairs, are bosons and are not subject to 
the exclusion principle. Of  the 64 particle-antiparticle pairs, 12 are pions, 
each having mass of about 0.14 GeV (Lee, 1981). A typical combination 
should have about six pions. I f  all the pions are independent,  the typical 
combination should have mass of  0.14 x6  G e V =  0.84 GeV. However, just 
as the pion mass of 0.14 GeV is less than the sum of the masses of a quark 
and an antiquark, 0.3 + 0.3 = 0.6 GeV, pairs of  oppositely charged pi0ns may 
form a bound state of  less mass than the sum of two pions masses, 0.14+ 
0.14 = 0.28 GeV. I f  such a bound state of  negative and positive pions has a 
mass as small as 0.1 GeV, and if the typical combination has one such pair 
and four other pions, then the typical combination should have a mass of  
0.14 x 4 + 0.1 = 0.66 GeV. Therefore the typical combination should have a 
mass in the range of (0.66-0.84) GeV. Summing over all 264 combinations, 
the total mass of  a one-vertex universe should be roughly in the range of 
(1.217-1.550) x 1019 GeV. The currently accepted value of the Planck mass 
is 1.221 x l019 GeV (Manin, 1981; see also Handbook of Chemistry and 
Physics, 59 Edition (CRC Press, 1978-1979, pp. F-250, F-252), which is 
close to the estimate taking account of bound states of  oppositely charged 
pions. 

Using Mp1 = 1.2 x 1019 GeV, Go = 1.8 • 10 -45, and GoM2p = 6 • 10 -39, 
roughly. 
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Summary 

Subject to the stated Conjectures, spin(8) gauge field theory is not only 
a good classification scheme but can also, from the input of the speed of 
light c, Planck's constant h, and the electron mass Me, give a fairly accurate 
set of particle masses and force constants. 

As can be seen from the comments following the conjectures, as to 
several points I have nothing more than an intuitive guess as to how to go 
about working on a solution to the many outstanding problems. 

Therefore it is fair to ask whether the tentative results of spin(8) gauge 
field theory are promising enough to warrant using it and working further 
on it. I believe they are. 
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APPENDIX A: LATrICE GAUGE STRUCTURE 

Spin(8) acts naturally on S 7. S 7 corresponds to the unit octonions. By 
applying the techniques of Barnsley, Geronimo, and Harrington (Barnsley 
et al., 1983) to octonions, a space-time lattice MR can be constructed whose 
elements are vertices associated with nth-order Borel sets. M, is constructed 
from S 7 by an octonionic iterated quadratic chaotic map Xn : S 7~ M,. M, 
is a four-dimensional lattice, rather than a manifold, so that spin(8) gauge 
field theory naturally has a base lattice, rather than a base manifold, and 
spin(8) gauge field theory has a natural lattice gauge structure. 

Construct a principal fibre bundle [P, p, M,, spin(8)] using X ,  and 
considering "dense in" to be equivalent to "equals to" for the purpose of 
physics. To do so, define the projection p locally as the composition of the 
maps: 

Mn •  M, • [spin(8)/spin(7)] 

M, x [spin(8)/spin(7)]~ M, • S 7 

M. XS7---> M. XM. 

M. XM.--> M. 

by quotient map 

by defining map of S 7 

by Xn 

by diagonal map 
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For  any lattice vertex s in M , ,  p - l ( s )  is dense in (s, spin(8)).  Let P be 
locally M ,  x spin(8).  Then  (P, p, Mn, spin(8)) is a pr incipal  fibre bundle  that  
gives a total ly unified gauge field theory of  all four  forces of  nature.  34, 
cor responds  to the four -d imens iona l  space- t ime base  lattice. 

Mn has a natural  quatern ionic  structure that  gives one t ime d imens ion  
and three space  dimensions.  

To construct  M,  and Xn begin by consider ing the m a p  Tr: 1 0 ~  O, 
where  O is the octonions  with basis {o0 = 1, O l , . . . ,  o7}, and Tl(o)  = (o - I)2, ' 
where o is in O and l is in [0, 2]. 

Define Kz as the set of  points  in O that  do not  go to infinity under  the 
m a p  T~' (7"l i terated n t imes) as n goes to infinity. 

Define B1 as the b o u n d a r y  of  K1. B1 is the Julia set for  7"1. The Julia 
sets for  the complex  p lane  are just  the same as the intersections of  oc tonionic  
Julia sets with any two-d imens iona l  p lane in oc tonionic  8-space that  includes 
the oc tonionic  real axis. 

For  1 = 2, the critical value,  B2 is the closed interval [0, 4] on the real axis. 
For  l = 0, Bo is the unit  sphere  S 7. 
Define ~Bt, where i = 1 , . . . ,  7, as the intersect ion of  Bt with the subspace  

of  O spanned  by {1, o~}. For  all l in (0, 2], ~Bt can be represented as the 
set o f  all points  in O of  the fo rm l +  el(1 + e2(l + e3(l+" �9 .)1/2)1/2)1/2 where  
ek = +1, and  where  ( ) 1 / 2  is defined by using ( - -1)  1/2-= Oi. 

Define a m a p  ~Yl,,~ f r o m  ~B h to jBI2 by 

iyl,.12(l, + e l ( l  I + (e2(ll +.. .)1/2)1/2)1/2) = 12+ el(12+ e2(/2+ �9 " . ) 1 / 2 ) 1 / 2  

~Yh,12 is defined for  all 11 and 12 in (0, 2] and  can be extended to l - - 0  by 
continuity.  

Cons ider  the case l = 2. ~B2 = [0, 4]. Define a m a p  ~s,(x) f rom [0,4] to 
[0, 4] by 

isn(x) = l +  e l ( l +  e2(/+ �9 �9 �9 + e , _ l ( l +  enX1/2)l/2)l/2) 1/2 (l = 2) 

Let ,8"n be the set of  all funct ions is~, with i.go = iSo(X)=x.  Define iR ,  = 
{~sn(l) = 3,(2)lisn is in iN',}, iR, has 2" distinct points,  which are just  the 
zeros o f  the Chebyshev  po lynomia l  of  degree 2", ;P2- (z), where z is in [0, 4]. 
Denote  the 2 n points  o f  ~Rn by ~ Z l < ~ z z < ' ' ' < ; z 2  -, and let iZo =0 .  The 
intervals (~Zj_l, ~zj] fo rm nth-order  Borel sets for  iB2. The cor responding  
Borel measure  f l m ,  is the singular  measure  concent ra ted  at the zeros of  the 
Cbebyshev  po lynomia l  iP2,,(z) taking the value 2 -n at each zero. 

Note  par t icular ly  that  T~ maps  each n th-order  Borel set densely onto 
the whole  set iB2 = [0, 4]. In fact, T2 acts as a Bernoulli  shift opera to r  for  
the Chebyshev  measure  system on ~B2, and,  as n goes to infinity, the 
Chebyshev  measure  goes to the measure  defined by the distr ibution taking 
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x the values 0 for x = 0 ,  1 for x =4 ,  and So dy/[y(4-Y)]  1/2 for 0 < x < 4 .  It is 
equivalent as a Bernoulli system to Lebesgue measure and the usual Borel 
sets on the unit interval. 

Now assume that there exists a unique map Yt,,~2: B~, ~ Bt2 for l~, 12 in 
[0, 2] such that Yzl.Z2 restricted to the subspace of O spanned by {1, o~} is 
equal to ~Yt~,~2 for all i = 1, . . . ,  7. 

Define Zn as the composition of Yo,2 and (T~) -1. Z,  is a map from 
Bo = S 7 to B2. B2 is the interval [0, 4] on the real axis, but B2 has seven 
Chebyshev measure structures fdmn, one for each imaginary octonion basis 
vector of. 

If  the o~ were not related by the octonionic multiplication, B 2 would 
be considered to be [0, 4] 7, with each factor [0, 4] corresponding to one of 
the idm,. However,  they are related. Pick one of the 0~. By symmetry, it can 
be taken to be 01. Of  the remaining 6, note that the subset {03, os, 07} is 
just, when multiplied by 01, the subset {02, 06, 04}. Therefore, there are only 
four independent  measure structures: ldmn, "2dmn, 6dmn, and 4dtn,,, corre- 
sponding to {Ol, 02, 06, 04}. Note that {01, o2, 06, 04} are four imaginary 
octonion basis vectors that are isomorphic to the quaternions, with Ol being 
the " t ime" dimension and {o2, 06, 04} being the three "space"  dimensions. 

Therefore B2 should be considered to be [0, 4] 4 with the [0, 4] factor 
corresponding to ldrn, being considered as time and the three [0, 4] factors 
corresponding to 2drnn, 6dmn, and 4dmn being considered as the three space 
dimensions, and with B2 having a natural quaternionic structure. 

The nth-order Borel sets and Chebyshev measure on the iB2 induce 
nth-order Borel sets and Chebyshev measure on B2. T2 then acts as a 
Bernoulli shift on B2, and T~ maps each nth-order borel set densely onto 
the whole set B2 = [0, 4] 4. Therfore, for each Borel set s in B2, / n l ( S )  is 
dense in S 7. 

The map Z,  is not quite the map needed, because it is a map from S 7 
to B2 and B2 has points, not nth-order Borel sets, as its elements, so that 
the inverse images of  elements of B2 under Z~ are not dense in S 7 as needed 
to construct the spin(8) gauge field theory. 

Define M,  as the lattice constructed from B2 by identifying the nth- 
order Borel sets of  B 2 (each with its Chebyshev measure) as the vertices of  
the lattice. Then define X, :  $7~ M, by composing Z,  with the defining 
map from B 2 to mn. The nth-order Chebyshev measure induced on Mn is 
denoted by drnx. It can be termed a chaotic measure since it is constructed 
from the chaotic process arising from the iterated maps T~'. 

�9 The base lattice M,  plays the role of  space-time. As M. is constructed 
by choosing a Borel set covering of a specified fineness corresponding to 
the choice of  n for the Chebyshev polynomials P2 o, the size of  the nth-order 
Borel sets provides a natural ultraviolet cutoff and lattice structure for M~. 
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As the nth-order Chebyshev measure for the polynomials P2~ is a singular 
measure concentrated at the zeroes of those Chebyshev polynomials, the 
lattice structure of Mn has a natural singular measure that converges as n 
does to infinity (or as lattice spacing goes to zero) to the Chebyshev measure 
that is equivalent, as a Bernoulli scheme, to Lebesgue measure. 

APPENDIX B: ADDITIONAL COMMENTS ON CONJECTURE 3 

Consider the relationship between C a, the space of triples of spinors, 
and the symmetric bounded domain D 8, isomorphic to S0(10)/S0(8) x 
SO(2). C 8 has eight complex dimensions but is unbounded, D 8 has eight 
complex dimensions and is a natural eight-dimensional generalization of 
the unit disk. 

Identify the origin of C ~ with the identity coset of  D ~. Consider the 
vector space of infinitesimal displacements at the origin of C 8, denoted by 
Vo A basis for Vc may be identified with the eight basis triples of spinors, 
which have themselves been identified with the eight first-generation fermion 
particles: the electron; the red, blue, and green up quarks; the red, blue, 
and green down quarks; and the neutrino. 

Consider the vector space of infinitesimal displacements at the identity 
coset of D 8, denoted by VD. VD has eight complex dimensions and describes 
the directions a geodesic through the origin may have (Gilmore, 1974). 

Identify Vc with VD. The stability subgroup SO(8) naturally maps VD 
onto itself (Gilmore, 1974). Therefore, there is a natural action of SO(8) on 
the eight fermion particles, and the action arises naturally from the structure 
of D 8. 

Perhaps that action of SO(8) on the eight fermion particles could be 
identified with the action of the infinitesimal generators of the s+ representa- 
tion of spin(8) on the triples of  spinors corresponding to the eight fermion 
particles of the first generation. 

The action of the stability subgroup SO(2) may be explained as being 
required by the complex structure of the domain D 8. 

The Silov boundary of D 8, denoted by Qs, is the set of vectors of the 
form ei'x, where 0_< t-< 7r and x is a vector on the unit sphere in R 8. Q8 
has eight real dimensions and its volume V(Q 8) is ~r5/3. If  z is in D 8 and 
u is in Qs, then every continuous function f(u) on Q8 defines a harmonic 
function f(z) on D 8 by the Poisson kernel P(z, u): f(z) ~ So~ P(z, u)f(u) du. 
The harmonic functions on D 8 are defined by the Laplace operator of the 
Bergman kernel for D 8. Note that, if ' denotes transpose, P(z, u)-~ 
(1/V(QS))(1 + Izz'l 2-2~z')4/l(z- u)(z-  u)'[ s (Hua, 1963). 

Now define another kernel R(z,u) by R(z,u)=(l+[zz'[2-23z')4/ 
](z - u)(z - u)'[ 8. Assume that gravitational interaction with the particles in 
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Q8 determines a continuous function f ( u )  in Qs. Then the mass of a particle 
in D 8 should be given by 

mass(z) = k f R(z, u)f(u) du = kV(QS)f(z) 
3 08 

where k is a constant of proportionality involving the volume of the part 
of  Q8 that is related to the particle and the number of  gravitons related to 
the particle. 

A P P E N D I X  C: ADDITIONAL COMMENTS ON CONJECTURE 58 

SZ=SO(3)/SO(2)=SU(2)/SO(2) is acted upon naturally by the 
weak force group SU(2), so that V(S 2) is a natural factor for VW. 
S0(5) /S0(3)  x SO(2) = S0(5)/SU(2) z SO(2) has SU(2) as a stability sub- 
group, so it is natural that the volume V(Q 3) of the Silov boundary of D 3 
is a factor of  V~. Q3 has three real dimensions, D 3 has three complex 
dimensions, and S 2 has two real dimensions. The square root of V(D 3) 
might be a "normalization length" relating Q3 and S ~. 

CP2=SU(3)/S(U(2) x U(1)) is acted upon naturally by the color 
force group SU(3), so that V(CP 2) is a natural factor for VC. 
SU(4)/S(U(3) • U(1)) has SU(3) as a stability subgroup, so it is natural 
that the volume V(Q 1"3) of  the Silov boundary of D ~'3 is a factor of  VC. 
Q~,3 has five real dimensions, D 1'3 has three complex dimensions, and CP 2 
has four real dimensions (or two complex dimensions). The fourth root of 
V(D 1'3) might be a normalization length relating Q~,3 and CP 2. 

S 4= sp(2)/sp(1) x sp(1) = S0(5)/S0(4)  is acted upon naturally by the 
de Sitter gravitational force group sp(2), so that V(S 4) is a natural factor 
for VG. SO(7)/SO(5)• has sp(2) as a 
stability subgroup, so it is natural that the volume V(Q s) of the Silov 
boundary of  D s is a factor of VG. Q5 has five real dimensions, D 5 has five 
complex dimensions, and S 4 has four real dimensions (or one quaternionic 
dimension). The fourth root of V(D 5) might be a normalization length 
relating Q5 and S 4. 

Consider a factor space G/H. The stability subgroup H can be con- 
sidered as the gauge group of a Yang-Mills theory with local gauge invari- 
ance under H (Gursey and Tze, 1980). Perhaps the volumes V(Q3), 
V(QI'3), and V(Q 5) used for the weak, color, and gravitational forces are 
useful because those forces'are related to Yang-Mills theories with local 
gauge invariance groups of SU(2), SU(3), and sp(2), respectively. 

SSee Article 401, Symmetric Riemannian Spaces, in the Encylopedic Dictionary of Mathematics 
(MIT Press, Cambridge, Massachusetts, 1977); also Hua (1963) and Gilmore (1974). 
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The vo lumes  of  S 2, C P  2, and S 4 w o u l d  a p p e a r  as volumes  o f  na tu ra l  

base  man i fo ld s  for  Y a n g - M i l l s  gauge field theor ies  o f  the  weak  force,  the  
co lor  force,  and  gravi ta t ion.  

A P P E N D I X  D: O C T O N I O N S  ( G u n a y d i n  and  Gursey ,  1973). 

I f  the oc ton ions  O have basis {Oo= 1, ol, o2, o3, o4, o5, o6, o7}, the 
oc ton ion  mul t ip l i ca t ion  tab le  can be given as fol lows:  

Ol 

02 
03 
04 
05 
06 
07 

O1 02 03 04 05 06  07 

- -  I 03 - - 0 2  07 - - 0 6  05 - - 0 4  

- - 0 3  - -  1 01 06 07 - - 0 4  - - 0 5  

02 - - O  1 - - l  - - 0 5  04  07  - - 0 6  

- - 0  7 - - 0  6 0 5 - -  1 - - 0  3 0 2 01 

O 6 - - 0 7  - - 0 4  03 - - 1  --O1 02 

- - 0  5 0 4 - - 0  7 - - 0  2 O 1 - -  1 0 3 

0 4 0 5 0 6 - - 0 1  - - 0  2 - - 0  3 - -  I 

Al though  the oc ton ions  are ne i ther  commuta t ive  nor  associat ive ,  they  
sat isfy the  a l te rna t iv i ty  law: 

Define [ x , y , z ] = ( x y ) z - x ( y z )  for  oc t ion ions  x , y , z :  [ x , y , z ] =  

[z, x, y]  : [y, z, x]  = - [ y ,  x, z] = - I x ,  z, y]  = - [ z ,  y, x]. 
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